1. Basics

1.1 Macroscopic diffusion

- Fick’s first law: \(v = \frac{dN}{dt} \frac{1}{A} = -D \frac{dn}{dx} \)

\(D \) \text{ \textasciitilde average “speed” of particles, determined by thermal motion}

in a gas: \(D = \frac{1}{2} \lambda \bar{v} \) \text{ mean free path between collisions}

in a liquid: \(D = \frac{kT}{\zeta} \) \text{ Stokes-Einstein law}

\(\bar{v} = \sqrt{\frac{3kT}{m}} \) \text{ avg. velocity (Maxwell)}

\(\zeta = 6\pi \eta_0 R_h \) \text{ drag/friction coefficient}
1. Basics

1.1 Macroscopic diffusion

- relation between flux and concentration/density change

\[\text{volume } V = A \Delta x \]
\[\text{density } \bar{n} = \frac{\Delta N}{\Delta V} \]

between \(t \) and \(t + \Delta t \):

\[
\frac{J(x) \cdot A \cdot \Delta t - J(x + \Delta x) \cdot A \cdot \Delta t}{\Delta V \Delta t} = \Delta N_x - \Delta N_{x+\Delta x} = \Delta \Delta N
\]

\(\Rightarrow \) continuity equation

\[\frac{\Delta \Delta N}{\Delta V} = \Delta \bar{n} \quad \text{(density change), } \Delta x \to 0; \Delta t \to 0 \]

\[\Rightarrow \frac{d\bar{n}}{dt} = -\frac{dJ}{dx} \]

1. Basics

1.1 Macroscopic diffusion

- combine Fick’s first law and continuity equation:

\[\Rightarrow \frac{d}{dt} \bar{n}(x, t) = D \frac{d^2}{dx^2} \bar{n}(x, t) \]

Fick’s second law, diffusion equation

- second-order differential equation!
- solution with appropriate initial and boundary conditions

\(\bar{n}(x, t) \) - is a function of space and time
- replace by \(c(x,t) \) in a solution (= concentration)

- point source, 1D solution:

initial condition: \(\bar{n}(t = 0) = \delta(x) \)
boundary conditions: \(\bar{n}(x = \pm \infty, t) = 0; \int_{-\infty}^{\infty} \bar{n}(x,t)dx = 1 \)

\[\bar{n}(x, t) = \frac{1}{\sqrt{4\pi Dt}} \exp \left\{ -\frac{x^2}{4Dt} \right\} \]

\[\langle x^2(t) \rangle = \sigma = 2Dt \]

3D: \(\langle r^2 \rangle = \langle x^2 \rangle + \langle y^2 \rangle + \langle z^2 \rangle \)

\[\Rightarrow \langle r^2(t) \rangle = 6Dt \]
1. Basics

1.2 Brownian motion

- describe the random motion of individual particles ("self motion" or "self diffusion")
- first observed by Brown on cell organelae

simple 1D derivation for end distance:

\[\langle x^2(t) \rangle = 2Dt \]

\[\langle x^2(t) \rangle = 6Dt \]

random step, uniform length per time \(\Delta t \):

\[\bar{l}_i = \pm l \]

distance traveled:

\[x_n = \bar{l}_1 + \bar{l}_2 + \bar{l}_3 + \ldots + \bar{l}_n \]

average:

\[\langle \bar{x} \rangle = \langle \bar{l}_1 \rangle + \ldots = 0 \]

but:

\[\langle \bar{x}^2 \rangle = \left(\langle \bar{l}_1^2 \rangle + \langle \bar{l}_2^2 \rangle + \ldots + \langle \bar{l}_n^2 \rangle \right) + \langle \bar{l}_1 \bar{l}_2 \rangle + \ldots + \langle \bar{l}_{n-1} \bar{l}_n \rangle \]

\[\langle \bar{x}^2 \rangle = n l^2 \]

0 (uncorrelated random numbers!)

compare with Einstein-Smoluchowski equation (full statistical/kinetical description of single-particle motion):

\[\sigma = \langle x^2 \rangle = 2D_{\text{self}} t, \quad D_{\text{self}} = \frac{kT}{\zeta} \]

here: \(D_{\text{self}} \to \frac{l^2}{2\Delta t}, \quad t \to n\Delta t \)
1. Basics

1.3 Correlation functions

\(\chi(a) \) \(\chi \): general property, e.g., density, intensity
\(a \): variable, e.g., \(r \) (space), \(t \) (time), ...

- define **auto**correlation function (ACF) of \(\chi(a) \):

\[
C_\chi(a) = \langle \chi(b) \chi(c) \rangle_{b,c} = \langle \chi(b) \chi(b + a) \rangle_b \\
= \lim_{B \to \infty} \frac{1}{2B} \int_{-B}^{B} \chi(h) \chi(h + a) dh \\
= \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \chi(b_i) \chi(b_i + a)
\]

- in a system, where \(\chi(a) \) varies *randomly*, \(C_\chi(a) \) is often a simple, analytical function that describes the **basic statistical properties**
 - e.g. for
 - instantaneous positions of molecules in liquids
 - random location or velocity of Brownian particles

- \(C_\chi(a) \) is often **directly measured**, e.g., in scattering experiments, NMR, or...

\[
\sum_{b} \left(\langle \chi(b) \rangle - \langle \chi \rangle \right) \left(\langle \chi(b + a) \rangle - \langle \chi \rangle \right) \\
\text{very often: } C_\chi(a) \sim e^{-a/\tau}
\]

\(\tau \): decay constant, correlation time

\(\text{long times: different sign as likely as equal sign } \Rightarrow \text{cancellation!} \)

\[
C_\chi(a) = \langle (\chi(b) - \langle \chi \rangle)(\chi(c) - \langle \chi \rangle) \rangle_{b,c} \\
= \langle \chi(b) \chi(c) \rangle_{b,c} - 2\langle \chi(b) \rangle \langle \chi(c) \rangle + \langle \chi \rangle^2 \\
= \langle \chi(b) \rangle \langle \chi(c) \rangle - \langle \chi \rangle^2 \\
\Rightarrow \text{so you can correlate the differences from the average!}
\]

\[
\text{white noise ("most random" variation of } \nu \text{): } C_{\nu}(t) = \langle \nu(t') \nu(t + t') \rangle_{t'} = \delta(t)
\]

\[
\text{example: random hopping (Markov process)}
\]
2. Dynamic light scattering (DLS)

2.1 The light scattering experiment

2.2 Rayleigh scattering

- interaction of an incoming (vertically polarized) wave
 \[\vec{E}_{iv} = \vec{E}_{0iv} \cos(\omega t - \vec{k} \vec{x}) \]
 with a molecule (or a fragment) with polarizability \(\alpha \)
 \(\Rightarrow \) induced dipole moment
 \[\vec{\mu} = \alpha \cdot \vec{E}_{iv} = \alpha \vec{E}_{0iv} \cos(\omega t - \vec{k} \vec{x}) = \alpha \vec{E}_{0iv} \cos(\varphi) \]
- oscillating dipole emits a scattered spherical wave

According to the Maxwell eqs. (accelerated charge!):

\[\vec{E}_{sv} = \sin \phi_z \frac{1}{4\pi\varepsilon_0 c^2} \left(\frac{d^2 \vec{\mu}}{dt^2} \right) \]

\[= \frac{\alpha \omega^2 \sin \phi_z}{4\pi\varepsilon_0 c^2} \frac{\vec{E}_{0iv}}{R} \cos(\omega t - \vec{k} \vec{R}) \]

\(\Rightarrow \) intensity ratio (scattered vs. incoming), use \(\omega = 2\pi \nu = 2\pi c / \lambda_0 \)

\[\frac{i_{sv}}{I_{iv}} = \frac{|\vec{E}_{sv}|^2}{|\vec{E}_{iv}|^2} = \frac{\pi^2 \alpha^2 \sin^2 \phi_z}{\varepsilon_0^2 \lambda_0^4 R^2} \propto \frac{\alpha^2}{\lambda_0^4} \] (!! blue sky, red sunset...)

- modifications when scattering center moves:
 \(\Rightarrow \) internal dynamics (vibrations etc.): polarizability changes, \(\alpha = f(t) \), Raman effect!
 \(\Rightarrow \) molecule moves: Doppler shift/broadening (\(\Delta \omega \sim \omega \nu > c \) for absorption lines)
2. Dynamic light scattering (DLS)

2.3 Interference and scattering vector

\[E_{s1} = E_0 e^{i(\omega t - \vec{k} \vec{R})} \]

\[E_{s2} = E_0 e^{i(\omega t - \vec{k} \cdot \vec{R})} \cdot e^{i \Delta \phi} \]

- phase shift \(\Delta \phi \) depends on path length difference \(\delta = a - b \) (simple trigonometry, \(|\vec{k}| = 2\pi/\lambda_0 \)):
 \[\Delta \phi = \frac{2\pi \delta}{\lambda_0} = \frac{2\pi}{\lambda_0} (a - b) = \vec{r}_{12} \cdot (\vec{k}_0 - \vec{k}) = -\vec{q} \cdot \vec{r}_{12} \]

includes the definition of the \textbf{scattering vector} (quantifies momentum transfer)

\[|\vec{q}| = |\vec{k} - \vec{k}_0| = \frac{4\pi \sin \theta/2}{\lambda_0} \]

- note: for constructive interference, \(\Delta \phi = n 2\pi \Rightarrow n = 2\pi \sin \theta/2 \equiv \text{Bragg} \)
- interference = superposition

\[F_{det} = F_{s1} + F_{s2} = F_0 e^{i(\omega t - \vec{k} \vec{R})} \cdot (1 + e^{-i\vec{q} \cdot \vec{r}_{12}}) \]

\[= E_0 e^{i(\omega t - \vec{k} \cdot \vec{R})} \sum e^{-i\vec{q} \cdot \vec{r}_i} \]

for many particles, independent of origin (e.g., \(r_1 = 0 \))

2.4 Basic phenomenon and spectroscopic approach

- Doppler effect of diffusing scattering centers, \(r_i(t) \):
 \[E_{det}(t) = E_0 e^{i(\omega t - \vec{k} \vec{R})} \sum e^{-i\vec{q} \cdot \vec{r}_i(t)} \]

 \[\Rightarrow i_{det}(t) \propto E_{det}^2(t) \propto e^{-q^2 D_c t} \]

 \text{time-dependent scattered intensity (damped)!}

- line width from FT\{i_{det}(t)\}: \(\delta \omega \sim q^2 D_c \)

- energy change \(\delta \omega \sim q^2 D_c \) related to Doppler broadening:
 \(\sim 10 \text{ meV in a liquid at room temperature} \)
- typical vis. photon energy: \(1.7 - 3 \text{ eV} \)

\[\Rightarrow \text{very small effect! measurable only with} \]

- narrow-banded lasers
- Fabry-Perot interferometers

\(\sim \text{ since 1960} \)
2. Dynamic light scattering (DLS)

2.5 Time correlation

- **idea:** direct observation of intensity fluctuations, possible for small scattering volume
 (⇔ static LS: large volume, fluctuations are averaged!)

\[
Ci(t) <idet>^2 <i_{det}^2> t <i_{det}^2> 1/2q^2Dc
\]

- **DLS terminology:**
 \[G_2(t) = C_i(t) = \langle i_{det}(t) i_{det}(t + \tau) \rangle_T \quad \text{intensity ACF}\]
 \[= A + Bg_1^2(t), \quad \text{Siegert relation}\]
 \[g_1(t) = \frac{\langle E_{det}(t) E_{det}(t + \tau) \rangle_T}{E_{det}^2(0)} = e^{-q^2Dc\tau} \quad \Gamma: \text{“first cumulant”}\]

2. DLS

2.5 Time correlation

- in practice for polymers (large molecules, many scattering centers):
 \[\Gamma = q^2D_{app}\]
 apparent diffusion coefficient, depends on
 - **intra**molecular interferences, intramolecular motions ⇒ size effect, \(q\) dependence
 - hydrodynamic interactions between particles ⇒ concentration (c) dependence

series expansion in \(c\) and \(q\):

\[D_{app} = \frac{\Gamma}{q^2} = D_{self}(1 + k_d c)(1 + C q^2 \langle R_g^2 \rangle)\]

⇒ do extrapolation for \(c \to 0, q \to 0\)
2. DLS

2.6 DLS on cellulose solutions

Cellulose (cotton) = \[
\begin{array}{c}
\text{in solution:} \\
\text{random coil}
\end{array}
\]

\[R_h \sim \text{molecular weight} \]

in bulk:
- semicrystalline polymer
- hardly soluble
- chain length?

Cuoxam: “Schweizers reagent”, copper sulfate - ammonia solution

Cd-tren: new high-tech coordinating solvent

Abbildung 4.2: Korrelationsfunktionen \(G(t) \) zweier Bakterienzellulosen in Cuoxam (oben) und Cd-tren (unten), aufgenommen für \(c = 0.2 \text{ g/l bei } 95^\circ \).

2. DLS 2.6 DLS on Cellulose solutions

“dynamic Zimm plots”
to remove \(c \) (concentration) and \(q \) (angle) dependencies:

Abbildung 4.3: Dynamische “Zimm-”Auftragung der Bakterienzellulosen BC122.2 in Cuoxam (A, via Kumulantenfit) und BC122.3 in Cd-tren (B, via Fit nach Williams-Watts).

3. Fluorescence correlation spectroscopy

3.1 Basic concepts

- fluorescence: red-shift of absorbed light

- confocal detection/imaging

3.2 Apparatus
3. Fluorescence correlation spectroscopy

3.3 Intensity fluctuations and normalized autocorrelation function

- remove offset: normalized autocorrelation function
 \[G(t) = \frac{C_i(t)}{\langle i \rangle^2} 1 = \frac{\langle i(t+\tau) i(\tau) \rangle}{\langle i \rangle^2} \frac{\langle i \rangle^2}{\langle i \rangle^2} \]
 \[G(t) = \frac{\Delta i(t+\tau) \Delta i(\tau)}{\langle i \rangle^2}, \text{ where } \Delta i(t) = i(t) - \langle i \rangle \]
 \[G(t \to 0) = \frac{1}{\langle N \rangle} \text{ inverse number of particles in the focus} \]

- theory assuming Brownian motion (free diffusion) and Gaussian detection volume
 \[G(t) = \langle N \rangle (1+t/\tau_D) \frac{1}{\sqrt{1+\omega^2 t/\tau_D}} \]
 \[\omega = w_z/w_{xy} \text{ 1/e^2-widths of detection volume} \]
 \[\tau_D = w_{xy}^2/D_{\text{self}} \text{ lateral diffusion time} \]
 \[\langle N \rangle = \langle c \rangle \tau^3/2 w_{xy}^2 w_z \text{ average particle number in focus} \]

- including triplet dynamics (triplet fraction \(f_T \), triplet lifetime \(\tau_T \))
 \[G(t) = \frac{1+f_T (exp(-t/\tau_T) - 1)}{\langle N \rangle (1-f_T) (1+t/\tau_D)} \frac{1}{\sqrt{1+\omega^2 t/\tau_D}} \]
 particles in triplet state are invisible for a certain time \(\tau_T \)
3. FCS 3.3 Autocorrelation function

- RNA: mediates between genetic code (DNA) and protein synthesis
- virus replication (e.g., AIDS) is based on certain RNAs
- replication (binding of reverse transcriptase) can be hindered by hybridization (=binding and blocking) with "anti-sense"-DNA
- understanding of hybridization dynamics (accompanied by unfolding of RNA)
 \[\Rightarrow \text{powerful drugs on the basis of DNA!} \]

3. FCS 3.4 Hybridization dynamics of RNA with DNA probes

- RNA: mediates between genetic code (DNA) and protein synthesis
- virus replication (e.g., AIDS) is based on certain RNAs
- replication (binding of reverse transcriptase) can be hindered by hybridization (=binding and blocking) with "anti-sense"-DNA
- understanding of hybridization dynamics (accompanied by unfolding of RNA)
 \[\Rightarrow \text{powerful drugs on the basis of DNA!} \]
2-component fit:

\[G(t) = \frac{1}{N_1+N_2} \sum_{i=1,2} \frac{Y_i}{1+t/\tau_i} \frac{1}{\sqrt{1+\omega^2 t/\tau_i}} \]

known: \(\tau_1 \) (free DNA) < \(\tau_2 \) (hybr. DNA),
determined: rel. population \(Y_{1,2} = N_{1,2}/(N_1+N_2) \)

Fig. 4: Increase in correlation decay time during the time course of hybridization of a labeled probe (HS6) to the folded α-1 RNA target. The average diffusion time increases due to higher fractions of \(\tau_2 \).

Fig. 5: Hybridization kinetics (fraction \(Y \) against time) of five different DNA oligonucleotide probes to the RNA target. \(Y \) is determined by evaluating the measurements (e.g. Fig. 4) with known \(\tau_1, \tau_2 \). The differences reflect the accessibility of binding sites at the folded target sequence.

⇒ details on binding kinetics!

P. Schwille et al., *Biochemistry* 35 (1996), 10182