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Fic. 1. Schematic diagram of FRET. Energy transfer from the
donor (GFP, CFP) to the acceptor molecule (DSRed, YFP) is only pos-
sible when the distance is lower than 100 A (A1, B1). Otherwise, FRET
is not measurable (A2, B2).

Annette Beck-Sickinger et. al (2003), J. Biol. Chem 278, 10562-10571
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Fia. 3. Fluoresecence microscopy studies. A, BHEK cells were
transiently cotransfected with hY,-GFP and hY,-DSRed fusion pro-
teins, and images were acquired through GFP (A7) and DSRed (A2)
channels using confocal laser scanning microscopy. A3 represents an
overlay of the GFP and DSRed channel. B, BHK cells were transiently
cotransfected with equal amounts of the same NPY receptor subtype
fused to the FRET pair CFP/YFP. One day after transfection, cells
were washed with PBS, and images were taken with appropriate
filter sets. BI images show hY;-CFP/hY -YFP, B2 images show hY -
CFP/hY,-YFP, and B3 images show hY.-CFP/hY.-YFP cotransfected
cells. Images were taken with the donor filter set (left column), with
the acceptor filter set (middle column), and with the FRET filter set
(right column).
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FIG. 3.13 Distortion caused to a true emission spectrum by Raman scattering from the
solvent. The spectra are those of a typical protein containing Trp in neutral aqueous solution

(10 ug ml—1y,
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Figure 1. A monochromatic and linearly polarized beam of light at constant time. The
electric field vector is in the xz plane, which is also “the plane of polarization.” The magnetic
field vector is in the yz plane. The direction of propagation is the +z direction, and the
picture slides to the right with time.
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Figure 2. (a) The electric field vector of monochromatic and circularly polarized light
depicted in the plane of the page as a function of time. Propagation is out of the page. (b)
The electric field vector of monochromatic and right circularly polarized light as a function
of distance at constant time. The helix slides to the right with time.
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FIG.5.2 Linear Dichroism: plane polarized light with vertical polarization, incident upon an
orientated molecule is absorbed only by the transition whose electric moment is in the
direction of the polarization. This chromophare (tyrosine) has transitions at 275 nm and 223

nm with directional properties as shown.









(c




W

_///}

s
T

e




(a)

(b)

(c) Z

FIG.5.9 Models for optical activity. (a) Peptide residue: the pe of the n—n* transition and
Hm of the n—n* transition mix under the influence of the asymmetric centre at C,. (b) The
polarizability of the groups surrounding the chromophore provides an asymmetric environ-
ment with which the n—nx* transitions of the tyrosine side chain interact. (c) The asymmetric
carbon atom: the two sterecisomers have the lower three substituents ordered in different
handedness, XYZ clockwise or anticlockwise respectively when viewed from above.



FIG. 54 Phenomenological explanation of optical rotation and circular dichroism. (a)
Optical rotation: plane-polarized light (po) is composed of circular components (p and P
which, between positions p2 and p3, are transmitted with different velocities, since n_#ng;
recombination of p3 and p3’ and subsequently ps and ps’ gives Pz and P4 orientated in the
direction po’ i.e. the plane of polarization has been rotated. (b) Circular dichroism and
ellipticity: the components g1 and g1’ between positions g2 and g3 are also absorbed to
different extents since &L # er; recombination of g3 and g3’ and subsequently g4 and ga’ gives
Q3 and Q4 which trace out the ellipse with major and minor axes in the directions go'and go”',
i.e. the emergent light is elliptically polarized.
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a) ORD- und b) CD-Spektren dreier unterschiedlicher Konformationen von Poly-L-Lysin
(nach: N. Greenfield, B. Davidson, G. Fasman, Biochemistry 6 (1967) 1630; N. Greenfield, G.

Fasman, Biochemistry 8 (1969) 4108).
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Fig. 6. The five pure component spectra from the deconvo-

luted 23 proteins at 46 wavelength values (standard + beta data
set). The average for the final deviation for each data point was

found to be + 1.6 x 1072 deg® cm~" dmol.
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